HOLIDAY OF PHYSICS S4

1. An object is placed 3 cm to the left of a convex (converging) lens of focal length $f=2\ cm$ as shown below .

- a. Use a graph paper to sketch a ray diagram to construct the image.
- b.Use lens equation to determine the image position.
- c. etermine image magnification.

The converging lens is removed and a concave (diverging) lens of focal length f = -3 cm is placed as shown below

- i.Sketch a ray diagram using graph paper to construct the image.
- ii.Use your graph or lens equation to determine the distance of this image from the lens.
- iii.State the properties of the obtained image
- 2.Six identical cells, each with an electromotive force (emf) ε =1.5 V and internal resistance r=1 Ω are connected in parallel. This battery is then connected to an external resistor R =3 Ω
- a.Use the above elements to draw a complete electric circuit including one

ammeter and one voltmeter.

- a) What is the equivalent emf of the parallel combination of cells?b) What is the equivalent internal resistance of the battery?
- c) What is the total current supplied by the battery?
- d) What is the electric current supplied by each cell?
 - g) What is the electric power delivered to the external resistor?
 - 3.Two parallel conducting plates are separated by a distance of 2.0×10^{-2} m. One plate has an electric charge +Q. An electric field of 5 000 N/C is directed to the left in the space between the plates, as shown in the diagram below.

- e) Copy the diagram and indicate which plate is positive (+) and which is negative (-).
- f) Determine the potential difference between the plates.
- g) An electron is initially located at a point midway between the plates. i)Determine the magnitude of the electrostatic force on the electron at this location. Magnitude of the electron's charge $e=1.6x10^{-19}\mathcal{C}$
- i) State its direction. Explain your answer.

4.The diagram below of pressure P versus volume V shows the expansion of 2.0 moles of a monatomic ideal gas from state A to state B .As shown in the diagram, $P_A = P_B = 600 \ N/m^2$, $V_A = 3.0 \ m^3$ and $V_B = 9.0 \ m^3$

- a) **a.** Use sign convention to calculate the work done by the gas as it expands.
- b) i)Use aproppriate expression of the ideal gas law that includes the number of moles and ideal gas constant to find the temperature T_A of the gas at state A . The ideal gas constant R=8.31 J/K.mol
 - ii) Find the temperature $T_{\it B}$ of the gas at state B .
 - iii) Calculate the change in internal energy of the gas as it expands. Remember that this is isobaric process and the gas is monatomic.
- c) Calculate the heat added to or removed from the gas during this expansion.